TOTAL CHROMATIC NUMBER OF EXTENDED DUPLICATE GRAPH OF PATH AND STAR GRAPH FAMILIES

${ }^{1}$ Dr. K. THIRUSANGU,
${ }^{1}$ Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai-600073, Tamilnadu. Email id: kthirusangu@gmail.com

M. VIMALA BAI ${ }^{2}$, Dr. C. SHOBANA SARMA ${ }^{3}$
${ }^{2 *}, 3$ Department of Mathematics, Bharathi Women's College (Autonomous), Chennai-108, Tamilnadu.
Email id: shobanasharma18@gmail.com
Corresponding Author
Email id: mvimalabai24@gmail.com

Abstract

In this paper, we obtain the total chromatic number of middle graph of Extended duplicate graph of path graphM(EDG[P鄀]), Total graph of Extended duplicate graph of path graph $\operatorname{T}\left(\operatorname{EDG}\left[P_{n}\right]\right)$, Middle graph of Extended duplicate graph of $\operatorname{starM}\left(\operatorname{EDG}\left[\mathrm{K}_{1, \mathrm{n}}\right]\right)$ and Total graph of extended duplicate graph of a star $\operatorname{T}\left(\operatorname{EDG}\left[\mathrm{K}_{1, \mathrm{n}}\right]\right)$.

Keywords: Total coloring, Total chromatic number, Extended duplicate graph,Middle graph, Total graph, Path and Star.

1. Introduction

Throughout this paper, we have considered the finite, simple and undirected graph. Let $G=(V(G), E(G))$ be a graph with the vertex set $V(G)$ and the edge set $E(G)$, respeitively.

A total coloring of G, is a function $f: S \rightarrow C$, where $S=V(G) \cup E(G)$ and C is a set of colors to satisfies the given conditions:
(i) no two adjacent vertices receive the same colors,
(ii) no two adjacent edges receive the same colors and
(iii) no edge and its end vertices receive the same colors.

The total chromatic number $\chi_{\text {tc }}$ of a graph G is the minimum cardinality k such that G may have a total coloring by k colors. The concept of total coloring was introduced by Behzad [1], in 1965.

2. PRELIMINARIES

2.1 Path

A Path in a graph Gis a sequence of vertices such that from each of its vertices there is an edge to the next vertex in the sequence.

2.2 Star

The star graph is a complete bipartite graph is denoted by $\mathrm{K}_{1, \mathrm{n}}$.

2.3 Duplicate graph

ADuplicate graph of G, $D G=\left(V_{1}, E_{1}\right)$, where the vertex set $V_{1}=V \cup V^{\prime}$ and $V \cap V^{\prime}=\phi$ and $f: V \rightarrow V^{\prime}$ is bijective(for $v \in V$, we write $f(v)=v^{\prime}$ for convenience) and the edge set E_{1} of $D G$ is the $\operatorname{edgev}_{1} v_{2}$ is in E if and only if both $v_{1} v_{2}{ }^{\prime}$ and $v^{\prime}{ }_{1} v_{2}$ are edges in E_{1}.

2.4 Extended duplicate graph

The extended duplicate graph of DG denoted by EDG, is defined as, add an edge between any two vertex from V to any other vertex in V^{\prime}, except the terminal vertices of V and V^{\prime}. For convenience, we take $v_{2}{ }^{\prime} \in V$ and $v_{2} \in V^{\prime}$ and thus the edge $v_{2} v_{2}{ }^{\prime}$ is joining.

2.5 Middle graph

The middle graph of a graph G denoted by $M(G)$ is define as follows the vertex set of $M(G)$ is $V(G) \cup E(G)$. Two vertices x, y in $M(G)$ are adjacent if one of the following condition holds:
(i) $\quad x, y$ are in $E(G), x$ and y are adjacent in G.
(ii) $\quad x$ is in $V(G), y$ is in $E(G)$, x and y are incident in G.

2.6 Total graph

The total graph of a graph G, denoted by $T(G)$. The vertex set of $T(G)$ is $V(G) \cup$ $E(G)$. Two vertices x, y in the vertex set of $T(G)$ are adjacent in $T(G)$ if one of the following condition holds:
(i) x, y are in $V(G)$ and x is adjacent to y in G.
(ii) $\quad x, y$ are in $E(G)$ and x, y are adjacent in G.
(iii) $\quad x$ is in $V(G)$, y is in $E(G)$ and x, y are incident in G.

The extended duplicate graph of path denoted by EDG[$\left.\mathrm{P}_{\mathrm{n}}\right]$ is obtained from the duplicate graph of path by joining v_{2} and v_{2}^{\prime}.

The extended duplicate graph of star denoted by $\operatorname{EDG}\left(\mathrm{K}_{1, \mathrm{n}}\right)$ is obtained from the duplicate graph of star by joining v_{1} and v_{1}^{\prime}.
The number of vertices and edges of EDG[$\left.P_{n}\right]$ is $2 n$ and $2 n-1$ respectively.
The number of vertices and edges of $\operatorname{EDG}\left[K_{1, n}\right]$ is $2 n+2$ and $2 n+1$ respectively.

3. Total Chromatic Number of $\mathrm{M}\left(E D G\left[\mathrm{P}_{\mathrm{n}}\right]\right)$

Theorem: 3.1

The total chromatic number of middle graph of extended duplicate graph of path graph is $\chi_{t c}\left(M\left(E D G\left[P_{n}\right]\right)\right)=8$ for $n \geq 4$

Proof

The number of vertices and edges of $M\left(E D G\left[P_{n}\right]\right)$ is $4 n-1$ and $6 n-2$ respectively.
The vertex set and the edge set $\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)$ is given as follows

Case(i): when \mathbf{n} is odd

$$
\begin{aligned}
\mathrm{V}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)= & \left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}^{\prime}: 1 \leq \mathrm{i} \leq\left[\frac{\mathrm{n}-1}{2}\right]\right\} \cup\{\mathrm{w}\} \\
\mathrm{E}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)= & \left\{\mathrm{v}_{2 \mathrm{i}-1} \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}} \mathrm{v}_{2 \mathrm{i}}^{\prime}, \mathrm{v}_{2 \mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{v}_{2 \mathrm{i}+1}, \mathrm{v}_{2 \mathrm{i}-1}^{\prime} \mathrm{x}_{\mathrm{i}}^{\prime}, \mathrm{x}_{\mathrm{i}}^{\prime} \mathrm{v}_{2 \mathrm{i}}, \mathrm{v}_{2 \mathrm{i}} \mathrm{u}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{v}_{2 \mathrm{i}+1}^{\prime}, \mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{i}}^{\prime}:\right. \\
1 \leq & \left.\leq \mathrm{i} \leq\left[\frac{\mathrm{n}-1}{2}\right]\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{x}_{i+1}, \mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{x}_{\mathrm{i}+1}^{\prime}: 1 \leq \mathrm{i} \leq\left[\frac{\mathrm{n}-3}{2}\right]\right\} \cup\left\{\mathrm{x}_{1} \mathrm{w}\right\} \cup\left\{\mathrm{v}_{2}^{\prime} \mathrm{w}\right\} \cup \\
& \left\{\mathrm{u}_{1}^{\prime} \mathrm{w}\right\} \cup\left\{\mathrm{x}_{1}^{\prime} \mathrm{w}\right\} \cup\left\{\mathrm{u}_{1} \mathrm{w}\right\} \cup\left\{\mathrm{v}_{2} \mathrm{w}\right\}
\end{aligned}
$$

Case(ii): when \mathbf{n} is even

$$
\begin{aligned}
& \mathrm{V}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}^{\prime}: 1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}^{\prime}: 1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}-1\right\} \cup\{\mathrm{w}\} \\
& \mathrm{E}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)=\left\{\mathrm{v}_{2 \mathrm{i}-1} \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}} \mathrm{v}_{2 \mathrm{i}}^{\prime}, \mathrm{v}_{2 \mathrm{i}-1}^{\prime} \mathrm{x}_{\mathrm{i}}^{\prime}, \mathrm{x}_{\mathrm{i}}^{\prime} \mathrm{v}_{2 \mathrm{i}}: 1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}\right\} \cup\left\{\mathrm{v}_{2 \mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{v}_{2 i+1}, \mathrm{v}_{2 \mathrm{i}} \mathrm{u}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{v}_{2 \mathrm{i}+1}^{\prime},\right. \\
& \left.\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{x}_{\mathrm{i}+1}^{\prime}: 1 \leq \mathrm{i} \leq\left[\frac{\mathrm{n}-2}{2}\right]\right\} \cup\left\{\mathrm{x}_{1} \mathrm{w}\right\} \cup\left\{\mathrm{v}_{2}^{\prime} \mathrm{w}\right\} \cup\left\{\mathrm{u}_{1}^{\prime} \mathrm{w}\right\} \cup \\
& \left\{\mathrm{x}_{1}^{\prime} \mathrm{w}\right\} \cup\left\{\mathrm{u}_{1} \mathrm{w}\right\} \cup\left\{\mathrm{v}_{2} \mathrm{w}\right\}
\end{aligned}
$$

Now we define total coloring f such that $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{C}$.
$\mathrm{S}=\mathrm{V}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right) \cup \mathrm{E}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)$ and $\mathrm{C}=\{1,2,3,4,5,6,7,8\}$
First assign the total coloring for the vertices as follows:

$$
\begin{array}{r}
\chi_{\mathrm{tc}}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{7}\right]\right)\right)=8 \text { for } \mathrm{n} \geq 4 \\
\mathrm{f}(\mathrm{w})=8
\end{array}
$$

$$
f\left(v_{i}\right)=f\left(v_{i}^{\prime}\right)=\left\{\begin{array}{lll}
1 & \text { if } & i \equiv 1(\bmod 3) \\
2 & \text { if } & i \equiv 2(\bmod 3) \\
3 & \text { if } & i \equiv 0(\bmod 3)
\end{array} \quad 1 \leq i \leq n\right.
$$

$$
f\left(x_{i}\right)=f\left(x_{i}^{\prime}\right)=\left\{\begin{array}{llll}
3 & \text { if } & i \equiv 1(\bmod 3) & 1 \leq i \leq \frac{n}{2} \text { when } n \text { is even } \\
2 & \text { if } & i \equiv 2(\bmod 3) & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
1 & \text { if } & i \equiv 0(\bmod 3) & 1 \leq i \leq 10
\end{array}\right.
$$

$$
f\left(u_{i}\right)=f\left(u_{i}^{\prime}\right)=\left\{\begin{array}{lll}
1 & \text { if } & i \equiv 1(\bmod 3) 1 \leq i \leq \frac{n}{2}-1 \text { when } n \text { is even } \\
3 & \text { if } & i \equiv 2(\bmod 3) \\
2 & \text { if } & i \equiv 0(\bmod 3)
\end{array} 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n\right. \text { is odd }
$$

Assign the total coloring for the edges as follows

$$
\begin{aligned}
& f\left(v_{2 i-1} x_{i}\right)=f\left(v_{2 i-1}^{\prime} x_{i}^{\prime}\right)=\left\{\begin{array}{llll}
6 & \text { if } & i \equiv 1(\bmod 3) & 1 \leq i \leq \frac{n}{2} \text { when } n \text { is even } \\
7 & \text { if } & i \equiv 2(\bmod 3) & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
8 & \text { if } & i \equiv 0(\bmod 3) & 1 \leq 1 \leq\left[\frac{n-2}{2}\right] \text { when } n \text { is even }
\end{array}\right. \\
& f\left(u_{i} v_{2 i+1}\right)=f\left(u_{i}^{\prime} v_{2 i+1}^{\prime}\right)=\left\{\begin{array}{llll}
6 & \text { if } & i \equiv 1(\bmod 3) & \left.1 \leq i \leq \frac{n}{2}\right] \\
\text { if } & i \equiv 2(\bmod 3) & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
8 & \text { if } & i \equiv 0(\bmod 3) & 1 \leq i n
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& f\left(x_{i} v_{2 i}^{\prime}\right)=f\left(x_{i}^{\prime} v_{2 i}\right)=\left\{\begin{array}{lll}
7 & \text { if } & i \equiv 1(\bmod 3) \quad 1 \leq i \leq \frac{n}{2} \text { when } n \text { is even } \\
8 & \text { if } & i \equiv 2(\bmod 3) \\
6 & \text { if } & i \equiv 0(\bmod 3)
\end{array} 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n\right. \text { is odd } \\
& f\left(v_{2 i}^{\prime} u_{i}\right)=f\left(v_{2 i} u_{i}^{\prime}\right)=\left\{\begin{array}{lll}
8 & \text { if } & i \equiv 1(\bmod 3) 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is even } \\
6 & \text { if } & i \equiv 2(\bmod 3) \\
7 & \text { if } & i \equiv 0(\bmod 3) 1 \leq i \leq\left[\frac{n-2}{2}\right] \text { when } n \text { is odd }
\end{array}\right. \\
& f\left(x_{i} u_{i}\right)=f\left(x_{i}^{\prime} u_{i}^{\prime}\right)= \begin{cases} & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
4 & 1 \leq i \leq\left[\frac{n-2}{2}\right] \text { when } n \text { is even }\end{cases} \\
& f\left(u_{i} x_{i+1}\right)=f\left(u_{i}^{\prime} x_{i+1}^{\prime}\right)= \begin{cases}5 & 1 \leq i \leq\left[\frac{n-3}{2}\right] \text { when } n \text { is odd } \\
& 1 \leq i \leq\left[\frac{n-2}{2}\right] \text { when } n \text { is even }\end{cases} \\
& f\left(x_{1} w\right)=1, f\left(x_{1}^{\prime} w\right)=2, f\left(u_{1} w\right)=3, f\left(u_{1}^{\prime} w\right)=7, f\left(v_{2} w\right)=5, f\left(v_{2}^{\prime} w\right)=4 .
\end{aligned}
$$

It is clear from the above rule of coloring, the graph $\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)$ is properly total colored with 8 colors.

Hence the total chromatic number of the middle graph of Extended duplicate graph of a path graph $\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)$ is 8 . Therefore $\chi_{\mathrm{tc}}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)=8$.

4. Total chromatic number of $\operatorname{T}\left(E D G\left[P_{n}\right]\right)$

Theorem: 4.1

The total chromatic number of Extended duplicate graph of path graph is given by $\chi_{t c}\left(T\left(E D G\left[P_{n}\right]\right)\right)=8 \quad$ for $n \geq 4$.

Proof

The number of vertices and edges of $T\left(\operatorname{EDG}\left[P_{n}\right]\right)$ is $4 n-1$ and $8 n-3$ respectively.
The vertex set and the edge set of $\mathrm{T}\left(\mathrm{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)$ as follows.

Case(i): If \boldsymbol{n} is odd

$$
\begin{aligned}
& \mathrm{V}\left(\mathrm{~T}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}^{\prime}: 1 \leq \mathrm{i} \leq\left[\frac{\mathrm{n}-1}{2}\right]\right\} \cup\{\mathrm{w}\} \\
& \mathrm{E}\left(\mathrm{~T}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)=\left\{\mathrm{v}_{2 \mathrm{i}-1} \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}} \mathrm{v}_{2 \mathrm{i}}^{\prime}, \mathrm{v}_{2 \mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{v}_{2 \mathrm{i}+1}, \mathrm{v}_{2 \mathrm{i}-1}^{\prime} \mathrm{x}_{\mathrm{i}}^{\prime}, \mathrm{x}_{\mathrm{i}}^{\prime} \mathrm{v}_{2 \mathrm{i}}, \mathrm{v}_{2 \mathrm{i}} \mathrm{u}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{v}_{2 \mathrm{i}+1}^{\prime}, \mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}^{\prime} \mathrm{u}_{\mathrm{i}}^{\prime}\right. \\
&\left.\mathrm{v}_{2 \mathrm{i}-1} \mathrm{v}_{2 \mathrm{i}}^{\prime}, \mathrm{v}_{2 \mathrm{i}}^{\prime} \mathrm{v}_{2 \mathrm{i}+1}, \mathrm{v}_{2 \mathrm{i}-1}^{\prime} \mathrm{v}_{2 \mathrm{i}}, \mathrm{v}_{2 \mathrm{i}} \mathrm{v}_{2 \mathrm{i}+1}^{\prime}: 1 \leq \mathrm{i} \leq\left[\frac{\mathrm{n}-1}{2}\right]\right\} \cup
\end{aligned}
$$

Case(ii): If \mathbf{n} is even

$\mathrm{V}\left(\mathrm{T}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}^{\prime}: 1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}^{\prime}: 1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}-1\right\} \cup\{\mathrm{w}\}$ $E\left(T\left(E D G\left[P_{n}\right]\right)\right)=\left\{v_{2 i-1} x_{i}, x_{i} v_{2 i}^{\prime}, v_{2 i-1} v_{2 i}^{\prime}, v_{2 i-1}^{\prime} v_{2 i}, v_{2 i-1}^{\prime} x_{i}^{\prime}, x_{i}^{\prime} v_{2 i}: 1 \leq i \leq \frac{n}{2}\right\} u$

$$
\left\{v_{2 i}^{\prime} u_{i}, u_{i} v_{2 i+1}, v_{2 i} u_{i}^{\prime}, u_{i}^{\prime} v_{2 i+1}^{\prime}, x_{i}^{\prime} u_{i}, u_{i} x_{i+1}, x_{i}^{\prime} u_{i}^{\prime}, u_{i}^{\prime} x_{i+1}^{\prime}, v_{2 i}^{\prime} v_{2 i+1},\right.
$$

$$
\left.\mathrm{v}_{2 \mathrm{i}} \mathrm{v}_{2 \mathrm{i}+1}^{\prime}: 1 \leq \mathrm{i} \leq\left[\frac{\mathrm{n}-2}{2}\right]\right\} \cup\left\{\mathrm{x}_{1} \mathrm{w}\right\} \cup\left\{\mathrm{v}_{2}^{\prime} \mathrm{w}\right\} \cup\left\{\mathrm{u}_{1}^{\prime} \mathrm{w}\right\} \cup\left\{\mathrm{x}_{1}^{\prime} \mathrm{w}\right\} \cup\left\{\mathrm{u}_{1} \mathrm{w}\right\}
$$

U

$$
\left\{\mathrm{v}_{2} \mathrm{w}\right\} \cup\left\{\mathrm{v}_{2} \mathrm{v}_{2}^{\prime}\right\}
$$

Now we define total coloring f such that $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{C}$.
where $\mathrm{S}=\mathrm{V}\left(\mathrm{T}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right) \cup \mathrm{E}\left(\mathrm{T}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)$ and $\mathrm{C}=\{1,2,3,4,5,6,7,8\}$

$\chi_{\mathrm{tc}}\left(\mathrm{T}\left(\operatorname{EDG}\left[\mathrm{P}_{6}\right]\right)\right)=8$ for $\mathrm{n} \geq 4$
First assign the total coloring for the vertices as follows:

$$
\begin{aligned}
& \left\{\mathrm{u}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+1}, \mathrm{u}_{\mathrm{i}}^{\prime} \mathrm{x}_{\mathrm{i}+1}^{\prime}: 1 \leq \mathrm{i} \leq\left[\frac{\mathrm{n}-3}{2}\right]\right\} \cup\left\{\mathrm{v}_{2} \mathrm{v}_{2}^{\prime}\right\} \cup\left\{\mathrm{x}_{1} \mathrm{w}\right\} \cup\left\{\mathrm{x}_{1}^{\prime} \mathrm{w}\right\} \cup\left\{\mathrm{v}_{2}^{\prime} \mathrm{w}\right\} \\
& \cup \quad\left\{\mathrm{v}_{2} \mathrm{w}\right\} \cup\left\{\mathrm{u}_{1} \mathrm{w}\right\} \cup\left\{\mathrm{u}_{1}^{\prime} \mathrm{w}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{lll}
1 & \text { if } & i \equiv 1(\bmod 3) \\
2 & \text { if } & i \equiv 2(\bmod 3) \\
3 & \text { if } & i \equiv 0(\bmod 3)
\end{array} \quad 1 \leq i \leq n\right. \\
& f\left(v_{1}^{\prime}\right)=1, f\left(v_{2}^{\prime}\right)=6, f(w)=8 \\
& f\left(v_{i}^{\prime}\right)=\left\{\begin{array}{lll}
3 & \text { if } & i \equiv 0(\bmod 3) \\
1 & \text { if } & i \equiv 1(\bmod 3) \\
2 & \text { if } & i \equiv 2(\bmod 3)
\end{array} \quad 3 \leq i \leq n\right. \\
& f\left(x_{i}\right)=f\left(x_{i}^{\prime}\right)=\left\{\begin{array}{llll}
3 & \text { if } & i \equiv 1(\bmod 3) & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
2 & \text { if } & i \equiv 2(\bmod 3) & 1 \leq i \leq \frac{n}{2} \text { when } n \text { is even } \\
1 & \text { if } & i \equiv 0(\bmod 3) & 1 \leq i
\end{array}\right. \\
& f\left(u_{i}\right)=f\left(u_{i}^{\prime}\right)=\left\{\begin{array} { l l l }
{ 1 } & { \text { if } } & { i \equiv 1 (\operatorname { m o d } 3) } \\
{ 3 } & { \text { if } } & { i \equiv 2 (\operatorname { m o d } 3) } \\
{ 2 } & { \text { if } } & { i \equiv 0 (\operatorname { m o d } 3) }
\end{array} \quad 1 \leq i \leq [\frac { n - 1 } { 2 }] \text { when } n \text { is odd } ~ \left(1 \leq \frac{n}{2}-1 \text { when } n\right.\right. \text { is even }
\end{aligned}
$$

Now assign the total coloring for the edges as follows:

$$
\begin{aligned}
& f\left(v_{2 i-1} x_{i}\right)=f\left(v_{2 i-1}^{\prime} x_{i}^{\prime}\right)=\left\{\begin{array}{llll}
6 & \text { if } & i \equiv 1(\bmod 3) & 1 \leq i \leq \frac{n}{2} \text { when } n \text { is even } \\
7 & \text { if } & i \equiv 2(\bmod 3) & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
8 & \text { if } & i \equiv 0(\bmod 3) & 1 \leq i=1
\end{array}\right. \\
& f\left(u_{i} v_{2 i+1}\right)=f\left(u_{i}^{\prime} v_{2 i+1}^{\prime}\right)=\left\{\begin{array}{llll}
6 & \text { if } & i \equiv 1(\bmod 3) & 1 \leq i \leq\left[\frac{n-2}{2}\right] \text { when } n \text { is even } \\
7 & \text { if } & i \equiv 2(\bmod 3) & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
8 & \text { if } & i \equiv 0(\bmod 3) & 1 \leq i n
\end{array}\right. \\
& f\left(x_{i} v_{2 i}^{\prime}\right)=f\left(x_{i}^{\prime} v_{2 i}\right)=\left\{\begin{array}{llll}
7 & \text { if } & i \equiv 1(\bmod 3) & 1 \leq i \leq \frac{n}{2} \text { when } n \text { is even } \\
8 & \text { if } & i \equiv 2(\bmod 3) & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
6 & \text { if } & i \equiv 0(\bmod 3) & 1 \leq i=2
\end{array}\right. \\
& f\left(v_{2 i}^{\prime} u_{i}\right)=f\left(v_{2 i} u_{i}^{\prime}\right)=\left\{\begin{array}{llll}
8 & \text { if } & i \equiv 1(\bmod 3) & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
6 & \text { if } & i \equiv 2(\bmod 3) & 1 \leq i \leq\left[\frac{n-2}{2}\right] \text { when } n \text { is even } \\
7 & \text { if } & i \equiv 0(\bmod 3) & 1 \leq i n
\end{array}\right. \\
& f\left(x_{i} u_{i}\right)=f\left(x_{i}^{\prime} u_{i}^{\prime}\right)= \begin{cases} & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
4 \leq i \leq\left[\frac{n-2}{2}\right] \text { when } n \text { is even }\end{cases} \\
& f\left(u_{i} x_{i+1}\right)=f\left(u_{i}^{\prime} x_{i+1}^{\prime}\right)= \begin{cases}5 & 1 \leq i \leq\left[\frac{n-3}{2}\right] \text { when } n \text { is odd } \\
& 1 \leq i \leq\left[\frac{n-2}{2}\right] \text { when } n \text { is even }\end{cases}
\end{aligned}
$$

$$
\begin{gathered}
f\left(v_{2 i-1} v_{2 i}^{\prime}\right)=f\left(v_{2 i-1}^{\prime} v_{2 i}\right)=\left\{\begin{array}{llll}
3 & \text { if } & i \equiv 1(\bmod 3) & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
2 & \text { if } & i \equiv 2(\bmod 3) & 1 \leq i \leq\left[\frac{n-2}{2}\right] \text { when } n \text { is even } \\
1 & \text { if } & i \equiv 0(\bmod 3) & 1 \leq 1
\end{array}\right. \\
f\left(v_{2 i}^{\prime} v_{2 i+1}\right)=f\left(v_{2 i} v_{2 i+1}^{\prime}\right)=\left\{\begin{array}{llll}
1 & \text { if } & i \equiv 1(\bmod 3) & 1 \leq i \leq\left[\frac{n-1}{2}\right] \text { when } n \text { is odd } \\
3 & \text { if } & i \equiv 2(\bmod 3) & 1 \leq i \leq\left[\frac{n-2}{2}\right] \text { when } n \text { is even } \\
2 & \text { if } & i \equiv 0(\bmod 3) & 1 \leq i
\end{array}\right. \\
f\left(x_{1} w\right)=1, f\left(x_{1}^{\prime} w\right)=2, f\left(v_{2} w\right)=5, f\left(v_{2}^{\prime} w\right)=4, f\left(u_{1}^{\prime} w\right)=7, f\left(u_{1} w\right)=3, f\left(v_{2} v_{2}^{\prime}\right)=1 .
\end{gathered}
$$

It is clear from the above rule of coloring, the graph $\mathrm{T}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)$ is properly total colored with 8 colors.

Hence the total chromatic number of the total graph of Extended duplicate graph of path graph $\left(T\left(E D G\left[P_{n}\right]\right)\right)$ is 8 .
Therefore $\chi_{\mathrm{tc}}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)=8$.

5. Total Chromatic Number of $\mathbf{M}\left(\operatorname{EDG}\left[\mathrm{K}_{1, \mathrm{n}}\right]\right)$.

Theorem 5.1

The total chromatic number of middle graph of extended duplicate graph of star graph is given by
$\chi_{\mathrm{tc}}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{K}_{1, \mathrm{n}}\right]\right)\right)=\mathrm{n}+4$ for $\mathrm{n} \geq 3$

Proof:

The number of vertices and edges of middle graph of extended duplicate graph of star graph $M\left(E D G\left[K_{1, n}\right]\right) 4 n+3$ and $n^{2}+3 n+4$ respectively.
$\mathrm{V}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{K}_{1, \mathrm{n}}\right]\right)\right)=\left\{\mathrm{V}, \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}^{\prime} \ldots \mathrm{x}_{\mathrm{n}}^{\prime}\right\} \cup\left\{\mathrm{V}^{\prime}, \mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}\right\} \cup\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime} \ldots \mathrm{v}_{\mathrm{n}}^{\prime}\right\} \cup\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right\} \cup\{\mathrm{w}\}$
$E\left(M\left(E D G\left[K_{1, n}\right]\right)\right)=\left\{\operatorname{Vx}_{i}^{\prime}, V^{\prime} x_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i} v_{i}, x_{i}^{\prime} v_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{v_{1}^{\prime} w\right\} \cup\left\{v_{1} w\right\} \cup$ $\left\{x_{1}^{\prime} w\right\} \cup\left\{x_{1} w\right\} \cup\left\{x_{i} x_{j}: 1 \leq i<j \leq n\right\}$
In $\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{K}_{1, \mathrm{n}}\right]\right)$ the vertices $\left\{\mathrm{V}, \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}^{\prime} \ldots \mathrm{x}_{\mathrm{n}}^{\prime}\right\}$ and $\left\{\mathrm{V}^{\prime}, \mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}\right\}$ induce a clique of order $\mathrm{n}+1$.

Now we define the total coloring f such that $f: S \rightarrow C$ as follows.
$S=V\left(M\left(E D G\left[K_{1, n}\right]\right)\right) \cup E\left(M\left(E D G\left[K_{1, n}\right]\right)\right)$ and $C=\{1,2,3 \ldots n+4\}$
First assign the total coloring for the vertices as follows:

$$
\begin{array}{ll}
\mathrm{f}(\mathrm{~V})=\mathrm{f}\left(\mathrm{~V}^{\prime}\right)=\mathrm{f}(\mathrm{w})=\mathrm{n}+4 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+1 \quad: & 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}^{\prime}\right)=\mathrm{n}+2 \quad: & 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}^{\prime}\right)=\mathrm{i} & \text { for } 1 \leq \mathrm{i} \leq \mathrm{n}
\end{array}
$$

Now assign the total coloring for the edges as follows:

$$
\begin{aligned}
& f\left(x_{i} v_{i}\right)=f\left(x_{i}^{\prime} v_{i}^{\prime}\right)=i-1
\end{aligned} \begin{aligned}
& 2 \leq i \leq n \\
& f\left(V x_{i}^{\prime}\right)=f\left(V^{\prime} x_{i}\right)=\left\{\begin{array}{cc}
2 i(\bmod (n+2)) & \text { if } 2 i \not \equiv 0 \bmod (n+2) \\
n+2 & \text { otherwise }
\end{array} \text { when } n\right. \text { is odd } \\
& f\left(V x_{i}^{\prime}\right)=f\left(V^{\prime} x_{i}\right)=\left\{\begin{array}{cc}
2 i(\bmod (n+3)) & \text { if } 2 i \not \equiv 0 \bmod (n+3) \\
n+3 & \text { otherwise }
\end{array} \text { when } n\right. \text { is even } \\
& f\left(x_{i} x_{j}\right)=f\left(x_{i}^{\prime} x_{j}^{\prime}\right)=\left\{\begin{array}{cc}
i+j(\bmod (n+2)) & \text { if }(i+j) \not \equiv 0 \bmod (n+2) \\
n+2 & \text { otherwise }
\end{array}\right. \\
& f\left(x_{i} x_{j}\right)=f\left(x_{i}^{\prime} x_{j}^{\prime}\right)=\left\{\begin{array}{cc}
i+j \bmod (n+3) \\
n+3 & \text { if }(i+j) \not \equiv 0 \bmod (n+3) \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

even
$\mathrm{f}\left(\mathrm{x}_{1}^{\prime} \mathrm{v}_{1}^{\prime}\right)=\mathrm{n}+3, \mathrm{f}\left(\mathrm{v}_{1}^{\prime} \mathrm{w}\right)=\mathrm{n}+1, \mathrm{f}\left(\mathrm{x}_{1}^{\prime} \mathrm{w}\right)=\mathrm{n}+2, \mathrm{f}\left(\mathrm{wv}_{1}\right)=\mathrm{n}-1, \mathrm{f}\left(\mathrm{wx}_{1}\right)=\mathrm{n}+3, \mathrm{f}$ $\left(\mathrm{x}_{1} \mathrm{v}_{1}\right)=\mathrm{n}+2$.

$\chi_{\mathrm{tc}}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{K}_{1,5}\right]\right)\right)=9$ for $\mathrm{n} \geq 3$
It is clear from the above rule of coloring the graph $\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{K}_{1, \mathrm{n}}\right]\right)$ is properly total colored with $\mathrm{n}+4$ colors.

Hence the total chromatic number of middle graph of extended duplicate graph of a $\operatorname{star} \operatorname{graph}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{K}_{1, \mathrm{n}}\right]\right)\right)$ is $\mathrm{n}+4$.
Therefore $\chi_{\mathrm{tc}}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{K}_{1, \mathrm{n}}\right]\right)\right)=\mathrm{n}+4$ for $\mathrm{n} \geq 3$.

6. Total Chromatic number of $\operatorname{T}\left(E D G\left[\mathrm{~K}_{1, n}\right]\right)$

Theorem 6.1

The total chromatic number of total graph of extended duplicate graph of star graph is given by
$\chi_{\text {tc }}\left(T\left(\operatorname{EDG}\left[K_{1, n}\right]\right)\right)=2 n+1$ for $n \geq 3$.

Proof

The number of vertices and edges of total graph of extended duplicate graph of $\mathrm{K}_{1, \mathrm{n}}$ is $4 n+3$ andn $^{2}+5 n+5$ respectively.

$$
\begin{aligned}
& \mathrm{V}\left(\mathrm{~T}\left(\operatorname{EDG}\left[\mathrm{~K}_{1, \mathrm{n}}\right]\right)\right)=\left\{\mathrm{V}, \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}^{\prime} \ldots \mathrm{x}_{\mathrm{n}}^{\prime}\right\} \cup\left\{\mathrm{V}^{\prime}, \mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}\right\} \cup\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime} \ldots \mathrm{v}_{\mathrm{n}}^{\prime}\right\} \cup\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right\} \cup\{\mathrm{w}\} \\
& \mathrm{E}\left(\mathrm{~T}\left(\operatorname{EDG}\left[\mathrm{~K}_{1, n}\right]\right)\right)=\left\{\mathrm{Vx}_{\mathrm{i}}^{\prime}, \mathrm{V}^{\prime} \mathrm{x}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{1}^{\prime} \mathrm{w}\right\} \cup\left\{\mathrm{v}_{1} \mathrm{w}\right\} \cup\left\{\mathrm{v}_{1} \mathrm{v}_{1}^{\prime}\right\} \cup\left\{\mathrm{x}_{1}^{\prime} \mathrm{w}\right\} \cup\left\{\mathrm{x}_{1} \mathrm{w}\right\} \cup \\
& \left\{\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}: 1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}\right\}
\end{aligned}
$$

In $T\left(E D G\left[K_{1, n}\right]\right)$ the vertices $\left\{V, x_{1}^{\prime}, x_{2}^{\prime} \ldots x_{n}^{\prime}\right\}$ and $\left\{V^{\prime}, x_{1}, x_{2} \ldots x_{n}\right\}$ induce a clique of order $\mathrm{n}+1$.

Now we define the total coloring f such that $f: S \rightarrow C$ as follows.

$$
\mathrm{S}=\mathrm{V}\left(\mathrm{~T}\left(\operatorname{EDG}\left[\mathrm{~K}_{1, \mathrm{n}}\right]\right)\right) \cup \mathrm{E}\left(\mathrm{~T}\left(\operatorname{EDG}\left[\mathrm{~K}_{1, \mathrm{n}}\right]\right)\right) \text { and } \mathrm{C}=\{1,2,3 \ldots 2 \mathrm{n}+1\}
$$

First assign the total coloring for the vertices as follows:

$$
\begin{aligned}
& f(V)=f\left(V^{\prime}\right)=f(w)=2 n+1 \\
& f\left(x_{i}\right)=f\left(x_{i}^{\prime}\right)=i \quad \text { for } 1 \leq i \leq n \\
& f\left(v_{i}\right)=2 n, f\left(v_{1}^{\prime}\right)=2 n-1 \\
& f\left(v_{i}^{\prime}\right)=2 n \quad: \quad 2 \leq i \leq n
\end{aligned}
$$

Now assign the total coloring for the edges as follows:

$$
\begin{aligned}
& f\left(x_{i} v_{i}\right)=f\left(x_{i}^{\prime} v_{i}^{\prime}\right)=i-1 \\
& f\left(V_{x_{i}^{\prime}}^{\prime}\right)=f\left(V^{\prime} x_{i}\right)=\left\{\begin{array}{c}
2 i(\bmod (2 n)) \\
2 n
\end{array}\right.
\end{aligned}
$$

$2 \leq i \leq n$
if $2 \mathrm{i} \not \equiv 0 \bmod (2 \mathrm{n})$ otherwise

$$
\begin{gathered}
f\left(V_{i}^{\prime}\right)=f\left(V^{\prime} v_{i}\right)=\left\{\begin{array}{cc}
2 i-1(\bmod (2 n-1)) & \text { if } 2 i-1 \not \equiv 0 \bmod (2 n-1) \\
2 n-1 & \text { otherwise }
\end{array}\right. \\
f\left(x_{i} x_{j}\right)=\left\{\begin{array}{cc}
(i+j)(\bmod (2 n+1)) & \text { if } i+j \neq 0 \bmod (2 n+1) \\
2 n+1 & \text { otherwise }
\end{array}\right. \\
f\left(x_{1}^{\prime} v_{1}^{\prime}\right)=2 n-2, f\left(x_{1}^{\prime} w\right)=2 n-1, f\left(v_{1}^{\prime} w\right)=n, f\left(w v_{1}\right)=n+1, f\left(w x_{1}\right)=2 n-2, \quad f \\
\left(x_{1} v_{1}\right)=2 n-1, f\left(v_{1} v_{1}^{\prime}\right)=1 .
\end{gathered}
$$

$\chi_{\text {tc }}\left(T\left(\operatorname{EDG}\left[K_{1, n}\right]\right)\right)=2 n+1$ for $n \geq 3$.
It is clear from the above rule of coloring the graph $T\left(\operatorname{EDG}\left[\mathrm{~K}_{1, \mathrm{n}}\right]\right)$ is properly total colored with $2 n+1$ colors.

Hence the total chromatic number of total graph of Extended duplicate graph of a star graph $T\left(E D G\left[K_{1, n}\right]\right)$ is $2 n+1$. Therefore $\chi_{t c}\left(T\left(\operatorname{EDG}\left[K_{1, n}\right]\right)\right)=2 n+1$ for $n \geq 4$.

7. CONCLUSION

We have obtained determined the total chromatic number for the following graphs.
(i) $\quad \chi_{\mathrm{tc}}\left(\mathrm{M}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)=8$ $\mathrm{n} \geq 4$
(ii) $\quad \chi_{\mathrm{tc}}\left(\mathrm{T}\left(\operatorname{EDG}\left[\mathrm{P}_{\mathrm{n}}\right]\right)\right)=8$
$\mathrm{n} \geq 4$
(iii) $\quad \chi_{\text {tc }}\left(M\left(E D G\left[K_{1, n}\right]\right)\right)=n+4$
for $\mathrm{n} \geq 3$
(iv) $\quad \chi_{\mathrm{tc}}\left(\mathrm{T}\left(\operatorname{EDG}\left[\mathrm{K}_{1, \mathrm{n}}\right]\right)\right)=2 \mathrm{n}+1$ for $n \geq 3$

REFERENCES

[1] Behzad M., Graphs and their chromatic numbers, Doctoral Thesis, Michigan state university (1965).
[2] Behzad M., Total concepts in graph theory, Arscombin, 23, (1987), 35-40.
[3] C. ShobanaSarma, and K. Thirusangu, Acyclic coloring of Extended Duplicate Graph of Star Graph Families, International Journal of Mathematics Trends and Technology, (2018) 109-112.
[4] Behzad M., A criterion for the planarity of the total graph of a graph, Proc. Cambridge philos. soc.,63, (1967), 679-681.
[5] I. Hamada and I. Yoshimura, Travels ability and connectivity of middle graph of a graph, Dis. Math, 17 (1976) $247-255$.
[6] D. Muthuramakrishnan and G. Jayaraman, Total Chromatic Number of Middle and Total graph of path and Sunlet Graph, International Journal of Scientific and Innovative Mathematical Research (2018).
[7] D. Muthuramakrishnan, Total Chromatic Number of Star and Bistar Graphs, International Journal of Pure and Applied Mathematics, (2017) 699-708.
[8[J.A.Bondy and U.S.R.Murty, "Graph Theory With Applications",MacMillan,London,976.
[9] K.Thirusangu,P.P.Ulaganathan And B.Selvam, "Cordial Labeling In Duplicate Graphs",Int.J.Computer Math.Sci.Appl.,4(1-2) (2010) 179-186.

